Chapter 29

Struct in struct

This section is another with no new rules — just useful tricks. Now that we have
structs, and lists, and string indexes, we can combine them to make big data
structures.

Usually these are pretty natural - maybe you have several people who can
own several dogs each. With practice, that’s easy to put into the computer and
use.

Big data structures are also good practice writing double and triple loops.

29.1 Lists of structs

Making a list of Cow structs looks like this:

// review of Cow:
[System.Serializable]
public struct Cow { public string name; public int age; }

public List<Cow> Barn; // list of Cows

As we know, in the Inspector you have to type a non-zero number for the size
of that list. Popping it open will show lots of Cow’s, which you can also pop open.

More interesting is how to search around the Barn in code. The trick is the
same as for things like c1.spotCol.r for the old cow’s with colored spots. Go
left-to-right, using the options for that type.

Here’s code using Barn:

int n=Barn.Count; // # of cows, same as normal
n=Barn[0] .age; // age of first cow

Barn[1] .age=4; // make 2nd cow be 4 years old
Barn[1] .name="Lu-Lou Cow";

373

Barn is a list, so we can use Count, or can pick out one item using [].
Barn[0] is a Cow, so we can use dot-age or dot-name.
To compare, some errors:

Barn.age; // error - have to say which cow
Barn[0] .Count; // error - cows don’t have a count

We can also copy entire cows in and out of the barn. This is really the same
boring stuff we did with lists of ints, or normal structs:

Cow cc; cc.name="Kow"; cc.age=5;

Barn[2] = cc; // simple var-assign, with a whole cow
Cow c3=Barn[3]; // c3 is a copy of that cow
Barn[4]=Barn[5]; // copy entire cows between list boxes

We can create the entire Barn list ourselves, adding each Cow. This makes
six 1-year olds named cowy:

Barn = new List<Cow>(); // size O

for(int i=0; i<6; i++) {
Cow c; c.name="cowy"; c.age=1; // a normal cow
Barn.Add(c); // <-standard Add

}

A list of classes works the same, except they also need to be new’d. This
makes a list of six Dog’s (Dog is a class):

List<Dog> Kennel= new List<Dog>(); // size O
for(int i=0; i<6; i++) {

Kennel.Add(new Dog());
}

That’s a little sneaky. new Dog() creates a Dog and returns a pointer to it.
Normally we assign that to a variable, but adding it to the list is just as good,
since that’s the final place for it.

We could use two steps instead, with a middeman variable:

Dog d=new Dog(); // 2-step version. d is a temp
Kennel.Add(d);

Here’s a bugged version. See if you can spot the problem. Hint: how many
Dog’s are there?:

Kennel = new List<Dog>();
Dog d=new Dog(); // dog is a class, so each new creates one
for(int i=0; i<6; i++) {
Kennel.Add(d); // <-standard Add
¥

374

This creates 6 pointers, all aimed at the same Dog.

A neat Unity trick is making a list of GameObject’s. This lets us drag many
Cubes into the Inspector:

public List<GameObject> Blocks; // size in Inspector, drag in Cubes

We’d change them the usual way. Blocks[0].transform.position=pos;
would move the first block. Or this would turn every other block red:

Color cc = new Color(1l, 0, 0); // red
for(int i=0; i<Blocks.Count; i+=2) {
Blocks[i] .GetComponent<Renderer>() .material.color=cc;

}

We can also fill that list ourself, by adding instantiated objects. They’ll all
be in the same spot, but we can move them later:

public GameObject ballPrefab; // drag in a Cube prefab
List<GameObject> Blocks;

void Start() {
Blocks = new List<GameObject>(); // size 0, so far

for(int i=0; i<10; i++) {
GameObject gg=Instantiate(ballPrefab);
Blocks.Add(gg) ;
}
}

This solves a problem from before. We were able to create dozens of balls,
but we had no place to save pointers to them all. A list is the perfect place for
that.

The shortcut Blocks.Add(Instantiate(ballPrefab)); would also work.
I prefer the extra step of declaring gg. We’ll probably want to use it to color or
place each fresh ball.

29.2 Structs with Lists in them

Structs with lists inside them also aren’t special, but look interesting. As usual,
the list needs to be new’d. Here’s a Goat struct which has a list of everything
the goat eats:

struct Goat {
public string name;
public int age;
public List<string> eats; // currently null

3

375

Some sample code playing around with Goat g;, showing how to use eats.
This goat will eat tin cans and old shoes:

.name = "Billy";

.eats.Add("cans"); // error - null reference exception. eats not created yet
.eats = new List<string>();

.eats.Add("tin cans");

.eats.Add("old shoes");

int n=g.eats.Count; // 2. g eats two things

0g 0”8 09 O0” OR

Then some errors:

g.Add("grapes"); // error. g is not a list
gl[0]="raisins"; // same error. g is not a list
int n=g.Count; // ditto

We could also create an eat-list first, then assign it all at once. Here
BillyFood is like a temp, passing the list of foods along to g2:

List<string> BillyFood = new List<string>();
BillyFood.Add("crates"); BillyFood.Add("barrels");
Goat g2;

g2.eats = BillyFood; // g2 now eats crates and barrels

new’s can pile up on us. Suppose Goat was a class. We’d need to create and
and to create it’s list:

Goat g = new Goat(); // new for class
g.eats=new List<string>(); // still need to new the eats list

29.3 Lists of strings tricks

A string can use indexes and has a length. So an list of strings is sort of like a
2-dimensional list. A warm-up review:

public List<string> W; // ["cow","banana","anteater", aardvark"]

int n=W.Count; // 4 words in the list
n=W[0] .Length; // 3 letters in cow

Now the new-looking part, using two []1’s in a row:

char ch=W[0][2]; // w (3rd letter of cow)
ch=W[2][0]; // a (1st letter of aardvark)

The cool thing is it’s not a new rule. W[0] is "cow", which is a string. So of
course adding [2] after grabs the ’w’ character.

Now we can write this cool nested loop to count the total number of a’s in
every word in the list:

376

int aCount=0;
for(int i=0; i<W.Count; i++) { // each word
for(int j=0; j<W[i].Length; j++) { // each letter in word
if (W[il [j1==’a’) aCount++;
}
}

As usual, it’s easy to mix up the i’s and j’s and get wrong counts and out-
of-range crashes. W[word] [1letter] might be better variable names if you don’t
use i and j for every nested loop.

A cute trick with arrays of strings is to use them to make a map. This
usually isn’t the best way, but it’s fun and a nice example.

For a 3x4 map, we can make a list with 3 strings, all length 4. We’ll make
the rule that o is an open space, and X has a block in it:

List<string> M=new List<string>();
M.Add ("xoox");
M.Add ("xxxo0");
M.Add("xo000"};

We can use a nested loop to make that picture. Cubes go on the X’s. This
is a copy of the nested grid loop from last chapter, except we check the map
before deciding to make a block:

for(int i=0; i<M.Count; i++) { // 3 rows
for(int j=0; j<M[i].Length; j++) { // each letter in word: x or o
if ¢ MIiT[j1=="x")
newBlockAt(i,j); // from previous chapter

It doesn’t look as nice as it could since newBlockAt leaves a little space be-
tween. In this case it would be better to have them touching, like one long solid
wall.

To get a real feel for working on a grid, we can count how many walls are
next to spot (x,y). We take a pretend step in each of the 4 directions:

int nearWalls=0;

if MLyl [x-1]1=="x’) nearWalls++; // left

if (M[y] [x+1]1=="x’) nearWalls++; // right

if (M[y+1] [x]=="%’) nearWalls++; // down (b/c of the picture)
if (M[y-1] [x]=="x’) nearWalls++; // up

It crashes if we're on an edge (fixed with if’s). Math like this is common
for walking around in a grid: M[y] [x-1] is the space to the left of us, and so
on.

377

29.4 2D lists

A real 2D list is just a list of lists. The cool thing is there are no new rules - we
can make them out of what we have now.

For example, List<List<string>> is a list of lists of words. The inside part
is List<string>, a normal list of strings. Then List< ... > goes around it.
So it’s a list, containing lists of strings (if you can figure out the TV show about
a serial killer who kills serial killers, you can figure out this).

To get started, suppose we have some lists of words for a Mad Lib:

public List<string> Subjects; // ["Bob", "The cat", "My face"];
public List<string> Verbs; // ["runs", "sits", "cries", "inspects", "tolerates"];
public List<string> Adjectives; // ["cowardly", "heavy duty"];
public List<string> DirectObjects;
// ["clouds", "fish", "tears", "truth", "gold", "needles"];

We eventually want to use these to randomly make 4-part sentences, choosing
one from each, like “The cat inspects heavy duty truth”.
We'll put those four lists into a big list:

List<List<string>> AllParts=new List<List<string>>(); // a list of lists
AllParts.Add(Subjects);

AllParts.Add(Verbs);

AllParts.Add(Adjectives);

Al1Parts.Add(DirectObjects);

Now AllParts has four string lists in it. A11Parts[1] is the verb list, and
Al1Parts[1] [0] is the first verb, "runs".
A picture would look like:

AllParts

[0] -> Bob, The cat, My face

[1] -> runs, sits, cries, inspects, tolerates
[2] -> cowardly, heavy duty

[3] -> clouds, fish, tears, truth, gold, needles

Playing with it to get a feel, we can do things like this:

All1Parts[2] .Add("slow"); // add a new adjective
Al11Parts[0] [1]1="The dog"; // replace cat with dog
AllParts.Count; // 4. Four lists of words

All1Parts[3] .Count; // 6. clouds, fish ... is 6 things
AllParts.Add(new List<string>()); // add 5th sentence part
All1Parts[4] .Add("?"); AllParts[4].Add("!!!"); // possible sentence enders

We can make a random sentence using a loop to pick from each part:

378

string madLib="";

for(int i=0;i<AllParts.Count;i++) {
if (i!=0) madLib+=" "; // space in front of every word except the first
int randPos=Random.Range(0, AllParts[i].Count);
madLib+=Al1Parts[i] [randPos];

}

Notice how the last line uses the usual []J[]. Down the side to the sentence
slot we’re on now, then across to the random word for that slot.

There’s one final super-cool thing a list of lists lets us do. Each of the inside
lists counts as a normal list, and we can do normal list things with it. For
example, we could write a function to pick a random word from a normal list:

string getRandWord(List<string> W) { return W[Random.Range(0, W.Count)]; }

This is a totally normal list function, that knows nothing about lists of lists
and won’t work with them. But we can still use it in our 2D list sentence maker:

for(int i=0;i<AllParts.Count;i++) {

madLibs+=getRandWord (Al1Parts[i]); // <- calling normal list function
}

This works since A11Parts[i] counts as an ordinary list of strings. getRandWord
is happy to take it as an input and pick out a random work from that one list.

A 2D integer list of lists feels more griddy, but it’s made mostly the same
way. This makes a 4x4 grid:

List<List<int>> G=new List<List<int>>(); // 2D list
for(int i=0;i<4;i++) G.Add(new List<int>());
// now we have 4 empty lists. Grow them all by four 0’s:
for(int i=0;i<G.Count;i++) // each column
for(int j=0;j<4;j++) G[i].Add(0); // add four 0’s, up this column

Probably the most confusing line is G.Add (new List<int>());. The inside
of it creates a fresh int-list. Normally we assign that to a variable, but we’re
allowed to skip the middle-man and jam it straight into the list.

We can think of this as a real grid:

31 o o o0 O
21 o 0o 0 O
(t] o o o0 O

(0] o o o0 O
G-> [0] [1] [2] [3]

379

I put G across the bottom, with the lists going up, so we could use G[x] [y]
in the more normal way. For example, G[3] [0] is the lower right.

These next two single loops put 7’s up the right side, and 8’s across the
middle (the last 8 overwrites a 7). Notice which slots have the variables:

for(int y=0;y<3;y++) G[31[yl=7; // up last column
for(int x=0;x<3;x++) G[x][1]=8; // across 2nd row

// result:

31 o o o 7
21 o o o 7
[1] 8 8 8 8

(0] o o o 7
G-> [0] [11 [2] [3]

We can even use a normal List<int> function on each column, since each
column is a list (but not on a row.) This sets everything in an ordinary list to
a value:

void setVal(List<int> A, int val) {
for(int i=0;i<A.Count;i++) A[il=val;

}

Now setVal(G[3],9); replaces those 7’s with 9’s. Of course, it only works
for columns — each column is one list. There’s no way to send a row to setVal
since each row is 1 box from each of the column lists.

29.5 Larger structures

We can use these rules to make structs with lists of structs, and larger. It’s not
that complicated, since you make them based on the data you already have.
For example, making a list of goats (which have lists of what they eat):

// repeat of Goat class:
class Goat {
public string name;
public List<string> eats;

}

// make goat list:

List<Goat> GG=new List<Goat>();

for(int i=0; i<8; i++) { // make 8 empty goats
Goat g=new Goat();
gli] .name = "goat #"+(i+1);
glil .eats = new List<string>();

380

G[i] .eats.Add("goat chow");
GG.Add(g);
}

Notice we have to new the goat-list, new each goat in the list, and new each
eats list for each goat.
A partial picture:

GG 0 —> | name: goat#l
| eats --> ["goat chow"]

1 -> | name: goat#2
| eats --> ["goat chow"]

2 -> | name: goat#2
| eats --> ["goat chow"]

A few sample lines that do and don’t work:

int n = GG.Count; // 8 goats

n = GG[O].Count; // ERROR -- goats don’t have a length
n = GG[0] .eats.Count; // 1 food

string s=GG[0] .eats[0]; // "goat chow"

n = GG[0] .eats[0] .Length; // 9 letters in "goat chow"
GG[2] .eats.Add("shoes"); // legal. also eat shoes
GG[2] .Add("cake"); // ERROR - goats aren’t lists

We can run some interesting loops through this. This nested loop counts
how many goats like a certain food:

int howManyLikeThis(List<Goat> G, string food) {
int foodCount=0;
for(int i=0; i<GG.Count; i++) { // check each goat
// check all foods this goat eats:
for(int j=0; j<G[i].eats.Count; j++) {
if (GG[i] .eats[j] == food) {
foodCount++;
break; // don’t double-count this goat; quit eats loop
}
}
}
return count;

}

It checks the obvious way: scan every goat, look through what that goat
eats, count it and skip to the next if you get a food match.

Here’s a triple loop to count the total Z’s in all food items (if five goats like
“pizza”, one of them twice, this would count as 12 z’s):

381

int zCount=0;
for(int i=0; i<GG.Count; i++) { // each goat
// each food:
for(int j=0; j<GG[i].eats.Count; j++) {
// each letter:
for(int k=0; k<GG[i].eats[j].Length; k++) {
if (GG[i] .eats[j][k]=="z’) zCount++;
}
}
}

GG[i] .eats[j] [k] has four total look-ups, but it’s fine since we really need
that many: which goat, what it eats, which food, which letter.

29.6 Giant game board example

Previously we used a nested loop to create a 2D grid of Cubes. But we couldn’t
save pointers to them, which meant we couldn’t find and change them later.
Now we can, which means we can almost make a game.

Our game will eventually allow you to toggle spaces (selected or un-selected)
letting you make crude pixel shapes. First a simple class to hold data for each
space:

class BoardSquare {
public GameObject cube; // pointer to Cube at this space
public bool selected; // selected squares change color

}

Then we’ll make a simple 2D list, to hold them, for when we make the cubes,
later:

// 2D grid of boardSquares:
List<List<BoardSquare>> Board; // want 8 wide, 6 high grid

void Start() {
Board = new List<List<BoardSquare>>(); // main 2D list
for(int i=0;i<8;i++) {
Board.Add(new List<BoardSquare>()); // add empty column
// grow column to 6 high:
for(int j=0;j<6;j++) Board[i].Add(new BoardSquare());
}

Now Board.Count is 8 (going across the bottom.) Board[0] .Count is 6 (go-
ing up.) Board[7] [5] .selected=true; selects the upper-right corner.

Making the blocks and hooking them up is nothing special. We’ll use

Board [x] [y] . cube=gg; as we create each real Cube, then math to get the
proper arrangement:

382

public GameObject cubePrefab; // drag in

// the rest of Start:
for(int x=0; x<8; x++) {
for(int y=0; y<6; y++) {
Vector3 pos; pos.z=0;
pos.x=-4.0f+x*1.2f; // x goes across, from left
pos.y=-3.0f+y*1.2f; // y goes up, from bottom
Board[i] [j].cube = Instantiate(cubePrefab, pos); // create and place shortcut
Board[i] [j].selected=false;
}
}

That gives us something new. We have 6 by 8 Cubes on the screen, and we
now have a way to find and change them all. Board [x] [y] . cube is that Cube.

The “game” will be to move around and toggle the current square on/off.
We'll be able to make a crude picture, which is still pretty cool. I’ll break it into
using the keys to move, and using space to toggle the color of the cube we’re
on. Update will call each function:

int row=0, col=0; // where we are on the board now
void Update() {

moveCheck () ;

selectCheck();
+

selectCheck will toggle the color of the current cube. Without movement,
we can never leave square (0,0), but that’s good enough to test. We can tap
space and watch the corner cube change color:

void selectCheck() {

if (Input.GetKeyDown (KeyCode.Space)) {
BoardSquare bs=Board[col] [row]; // <- using row/col to look up current space
bs.selected = !bs.selected; // flip T/F
// now set to correct on/off color:
Color cc=Color.blue;
if (bs.selected) cc=Color.red;
bs.cube.GetComponent<Renderer>() .material.color = cc;

The best part of this is the top line with bs=Board[col] [row]. It picks out
the current spot, based on row and col, exactly how we want in a 2D grid. Once
we have that, we use bs.selected and bs.cube to look at the parts.

383

Without using bs as a shortcut, the last line would start with:
Board[col] [row] .cube.GetComponent. That’s long, but reading it left-to-
right should look fine.

Movement is the arrow keys. left/right change the column, up/down change
the row. I decided to have off-edge wrap around, which requires 4 ugly if’s.
The current cube is a tad smaller, to show that we’re on it:

void moveCheck() {
int oldRow=row, oldCol=col; // save old row/column

if (Input.GetKeyDown (KeyCode.RightArrow)) {
col++; if(col>=8) col=0; } // wrap-around

if (Input.GetKeyDown(KeyCode.LeftArrow)) {
col--; if(col<0) col=7; }

if (Input .GetKeyDown (KeyCode .UpArrow)) {
row++; if(row>=6) row=0; }

if (Input.GetKeyDown (KeyCode .DownArrow)) {
row--; if(row<0) row=5; }

// if anything changed, show new spot:
if (oldRow!=row || 0ldCol!=col) {
// Reset o0ld square to normal size:

Board[01dCol] [01dRow] .cube.transform.localScale = new Vector3(1,1,1);

// Make new square smaller:

Board[col] [row] .cube.transform.localScale = new Vector3(0.8f,0.8f,0.8f)

Doing something special to the current item is always a pain. That’s what
the second half of the code is doing. We need to check whether we moved, reset
to old square’s size (which is why we needed to save it in old row and col), and
finally change the new square.

Be sure and look at Board [col] [row] . cube.transform.localScale. Long,
but pretty.

This type of set-up for a board is common. Each square might need to know
the terrain type, buildings in it, who captured it, and so on. A class or struct
is good for that. A link to the visible part (cube, here) is just one more field.

29.7 List of indexes

This is an old trick, not very common anymore, but it’s a fun exercise. Suppose
you want to make a list of some of the things in a list. If you wanted items 1,4
and 6. You’d make a list [1,4,6], which is an array of indexes. Here it is in
code:

384

’

public List<string> Ani; // ["ant","bear","cow","deer","eel","ferret","goat","hawk"]
public List<int> InZoo; // [1,4,6] // stands for bear,eel,goat

void Start() {
// print animal names in the zoo:
for(int i=0;i<InZoo.Count;i++)
print(Ani[InZoo[il]l); // bear eel goat

We’ve never seen anything like Ani [InZoo [i]] before. It’s a nested look-up,
doing the thing above. InZoo[i] goes through 1, 4, 6. So Ani[InZoo[i]] goes
through items 1, 4 and 6: bear, eel, goat.

Here’s a longer version of the same trick. Suppose we want to print the
animals in a random order. A cheap way is to shuffle a list with 0-7, then read
the animals in that order:

List<int> RandIndexes=new List<int>();
for(int i=0; i<Ani.Count; i++) RandIndexes.Add(i); // 0-7
shuffle(RandIndexes); // old function. ex: 2,6,0,1,5,7,4,3

for(int i=0;i<RandIndexes;i++)
print (Ani[RandIndexes([i]]);

The last line is the same nested look-up as before.

This is really a version of pointer thinking. We can’t have pointers to strings,
but we can use the indexes like pointers. It’s not common, but it’s a nice way
to practice.

29.8 Internal list pointers

If we have a list of objects, we can pick out some of them with another list of
pointers. For example A11Dogs is a list of every dog. SledTeam won’t have any
new dogs — it will only point to things in A11Dogs:

public List<Dog> AllDogs; // created and filled in Inspector
List<Dog> SledTeam; // will point to some things in AllDogs

void Start() {
SledTeam=new List<Dog>();
for(int i=0;i<4;i++) SledTeam.Add(null); // 4 empty Dogs pointers

// start with first 4 dogs, but can change:

for(int i=0;i<4;i++) SledTeam[i]=Al1lDogs[i];
}

385

You can’t tell by the definition. but in our minds SledTeam isn’t holding
Dogs. It will never have any Dogs of its own. It’s purpose is to pick 4 dogs out
of the main Dog list.

This would print the names of all dogs on our team:

for(int i=0;i<SledTeam.Count;i++) {
if(SledTeam[il==null) print("(missing)");
else print(SledTeam[i] .name) ;

Here, checking SledTeam[i]==null; makes perfect sense. null is a perfectly
good value — we haven’t picked a Dog for that position yet. We're also imagining
SledDog[i] .nameas reaching over into A11Dogs:

AllDogs: 0 1 2 3 4 5 6 7 8 (9 real dogs)
\/ /7
/\ /7

SledTeam: o o o o (4 arrows)

There’s another version of this trick where a class has pointers to itself inside
of it. For example, all of our Rabbits can have another Rabbit best friend:

[System.Serializable]

public class Rabbit {
public string name;
public int age;

[System.NonSerialized]
public Rabbit bestFriend;
// not part of me -- an arrow to another rabbit

}

public List<Rabbit> AllRabbits; // set up in Inspector

Clearly, we can’t have an actual rabbit in a rabbit, since that would have
another rabbit inside of it, going on forever. But it’s fine to have bestFriend
be an arrow. We’ll never use new on it. Its purpose is to point out some other
pre-made rabbit (or be null if we have no best friend).

A neat thing is that Unity can’t tell. It assumes gameObject variables
pointer to gameObjects it created. But it assumes a rabbit is a rabbit and tries
to make one for bestFriend, triggering infinite rabbits. A special safely check
kicks in after it makes 7 levels of nested rabbits and gives an error.

[System.NonSerialized] is there to explain to Unity that bestFriend is
like a gameObject pointer — it’s only an arrow. It says not to create it. All of
this can get complicated quickly, but deep down it’s the Real vs. Arrow issue
that all reference types have.

This code makes every pair of rabbits be mutual best friends:

386

for(int i=1;i<AllRabbits.Count;i+=2) { // 1,3,5,7 ...
Rabbit r1=A11Rabbits[i-1], r2=A11Rabbits[i];
rl.bestFriend=r2; // Ex: Bunny[0] and [1] mutually like each other
r2.bestFriend=r1;

}

Or we could randomly assign best friends, with some anti-social rabbits
whose best friends are null (1 in 6 chance):

for(int i=0;i<Al1Rabbits.Count;i++) {

Rabbit fr=null; // no best friend, so far

if (Random.Range(1,6+1)!=1) { // 1 in 6 for no friend
int friendNum=Random.Range(0,Al1lRabbits.Count);
if (friendNum!'!=i) fr=A11Rabbits[friendNum];
// can’t be friends with yourself

}

Al1Rabbits[i] .bestFriend=fr;

// note: assigning null is legal, and fine

}

Basically, bestFriend could aim at any other rabbit, or null, and can
double-up. That’s not as fair as pairs of best-friend rabbits, or maybe it is,
if you’re a rabbit.

Now that we’ve set best friend arrows, we can use them. This would count
how many rabbits have a best friend named Thumper:

int count=0;
for(int i=0;i<Al1Rabbits.Count;i++) {
Rabbit bf=Al11Rabbits[i].bestFriend;
if (bf!=null) { // we may not have a best friend
if (bf .name=="Thumper") count++;
}
}

Finding the most popular rabbit needs a nested loop. We’ll check every
rabbit, counting how many other rabbits like it, remembering the highest total:

int bestIndex=-1; // most popular rabbit, so far (Price is Right strategy)
int bestVotes=-999; // votes for that rabbit
for(int i=0; i<AllRabbits.Count; i++) {

Rabbit currentBunny=AllRabbits[i]; // shortcut to this bunny

int votes=0; // how many other bunnies like this one:

for(int j=0; j<AllRabbits.Count; j++) {

if (A11Rabbits[j] .bestFriend==currentBunny) votes++;
}

if (votes>bestVotes) { bestIndex=i; bestVotes=votes; }

387

}
if (bestIndex<0) print("no rabbits like any other rabbits");

else print("Most popular is "+AllRabbits[bestIndex]);

It’s a nested loop because each rabbit knows who it likes, but not who likes
it. We need another loop for that.

388

	Struct in struct
	Lists of structs
	Structs with Lists in them
	Lists of strings tricks
	2D lists
	Larger structures
	Giant game board example
	List of indexes
	Internal list pointers

