
Chapter 19

Structs

This section is about making own own new variable types. It’s not as exciting as
it sounds, since all we can do is group together ints, floats and strings. But
it’s a nice trick, and it’s the basis for classes and Object Oriented Programming.

For example, it takes three floats to make a color (red, green, blue.) A
struct lets Color be an official type, which the computer knows is made of three
floats.

Even better, the trick works for stuff we just make-up. Suppose we’re writ-
ing a program about cows – each has a name, age and weight. It would be nice
to build that into the program. Then we could declare Cow c1; and let the
computer automatically make those variables for the parts.

The common name (and the one C# uses) for these is struct. There are
some built-ins, and we can make our own. I think the best way to learn them
is to make the Cow example, then a few more, then give the formal rules.

19.1 Cow struct example

Here’s the top part of a program making a sample struct named Cow:

class TestA : MonoBehaviour {

struct Cow {

public string name;

public int age;

public float pounds;

}

First, let’s take a look at the overall form. The last five lines, struct Cow {
}, count as one thing. The name Cow is in front. Then a big set of curly-braces
mark what belongs to Cow. The inside looks like three variable declarations.
They aren’t, but it’s the same rules.

224

Now onto what it does. This makes a new type named Cow, and says how
to build it. It doesn’t declare any variables, or really do anything. It’s more
like a recipe or a blueprint. It lets the computer know that if someone declares
a Cow variable, it’s legal, and says how to make one.

The names inside are called fields. It’s the same use of the word as those
web-based forms that say “required field.” They describe the parts of a Cow.

Now we can declare some Cows:

int n; // old, boring declare just for reference

Cow c1;

Cow c2;

Cow c1; declares c1 as a Cow. Just like you’re probably thinking, the com-
puter says “A Cow? How do you declare a Cow?” But then it looks near the
top and sees struct Cow. That tells the computer it can declare a Cow, and the
middle part tells it what the parts are – a string and int and a float.

Cow c2; declares another Cow. Nothing new there – I just want two Cows
for later in the example.

Here’s a picture of all 3 variables in the program:

n ___

c1 c2

------------- ------------

| name: | | name: |

| age: | | age: |

| pounds: | | pounds: |

------------- ------------

Again, n is nothing special – it’s just there for comparison. The interesting
thing is that c1 is one variable, with those three parts inside of it. Then c2

is another variable, with the same three parts. Inside of c1, name is a string.
There’s another string. name, inside of c2.

Here’s a program using c1 and c2 (I’m including everything here, so only
Start is new):

class TestA : MonoBehaviour {

struct Cow {

public string name;

public int age;

public float pounds;

}

int n;

225

Cow c1;

Cow c2;

void Start() {

c1.name = "Bessy";

c2.name = "Miss Cowy-cow";

c1.age=6;

c2.pounds=1200;

print(c1.name + " is " + c1.age + " years old"); // Bessy is 6 years old

}

}

This is showing us the last thing we need – how to use the parts of a struct.
c1.name="Bessy"; shows the rule: put the variable name, then a dot, then the
field. c1.name is the name slot in the first cow.

After you type "c1.” (c1, then a dot,) autocomplete will even show you the
fields: name, age and pounds. It knows about them from the struct Cow we
made at the top.

The first two lines are showing us that each Cow has it’s own name. c1.name
and c2.name are different. In other words, the picture is correct. The next two
lines are using the age and pounds fields, just to show we can. c2.pounds=1200;
goes to c2, then inside its pounds field, and sets that to 1200.

The print shows that the “varName-dot-field” rule is like a variable – you
can assign to c1.name and also read from it.

After Start runs, here’s the new picture:

n ___

c1 c2

-------------- ------------

| name: Bessy | | name: Miss Cowy-cow

| age: 6 | | age:

| pounds: | | pounds: 1200

-------------- ------------

The picture is really pretty boring. Start assigned four things, and the
picture shows all four of them. The pounds in the lower-right is c2.pounds, the
last assignment put 1200 in it, and there it is.

c1.pounds and c2.age are empty, since the code didn’t put anything in
them. If I tried to print them, I’d get the usual “has not been initialized” error.

226

L-values

In the assignment chapter, I made a big deal about how the thing on the left
had to be a variable, all by itself. You could never have a formula – x+1 = 7;

is an error. But here, the left side isn’t quite a variable. c1.age says to find
variable c1, and then look inside for the age part. It’s like a little formula, so
c1.age=6; looks like it breaks the rule.

The real rule for assignment statements is that the left side needs to count
as a variable. It needs to be a box that can be changed. The technical name
is L-value. It stands for “value that can be on the left-hand of an assignment
statement.” I know L-value sounds really fake, but put “lvalue” in a Search
Engine – that’s really what we call it.

Before this, only actual variables were L-values. Using a struct field is a
new thing that also counts as a variable. In other words, in every way, c1.age
works like an int variable. You can use c1.age++; or c1.age *=2; or c1.name
= "a" + c1.name + "b";.

It takes a while to get used to seeing mini-formulas that count as variables,
but they eventually feel natural. Later, we’ll see other things like this – they
aren’t simple variables, but they count that way.

19.1.1 More examples

This is a traditional very basic struct example, with just two fields of the same
type. It makes a FullName struct containing a first and last name. This mini-
program creates it, declares some FullName variables and uses them a little:

// creates a new struct: "FullName":

struct FullName {

public string first, last;

}

As with Cow, this doesn’t create any variables. It defines FullName as a
new struct type.

The fields are both the same type – two strings. You can re-use any types
you need for the fields. This also uses the comma-declare shortcut. The same
as always it’s just a shortcut and isn’t any different than declaring them on
two lines. A trick in choosing field names is to remember that everyone knows
they’re part of a FullName. first and last are fine since we know it’s fullname-
first and fullname-last.

The start of the code using them:

void Start() {

FullName mom1, mom2; // both are fullnames

227

mom1.first = "Olga";

mom1.last = "Pog";

string m = mom1.first + " " + mom1.last;

print("Mother1’s name: "+ m); // Olga Pog

Structs can be declared using the comma shortcut. They can also be local or
global, like mom1 and mom2 are local to Start here. You can use struct variables
in pretty much all the ways and places you’d use ints or strings.

The two lines assigning to mom1 are pretty typical. In our minds we’re
assigning “Olga Pog” as her name, and it takes two steps. It common to assign
to every field, all together like this.

In the next line I wanted to show the fields act like strings in all ways:
mom.first + " " + mom.last is just three strings added together.

I’ll reuse some other old tricks for mom2:

mom2.first= "blue" + "elf" + 451;

mom2.last = mom1.last;

mom2.last += "ie";

print("Mother 2 : "+ mom2.first + " " + mom2.last); // blueelf451 Pogie

}

The second line, mom2.last = mom1.last; is just copying a string to a
string, even if it took those funny dots to get to them. In the next line, the +=

shortcut works as normal, tacking ie to the end.

Here’s a short code snippet using a Cow and a FullName together. Nothing
really special, just to show it can be done:

Cow a1;

a1.name = "Lou-Lou";

a1.age=7;

FullName p1;

// person has same name as the cow:

p1.first = a1.name; // no problem -- just string = string

p1.last = "Smith";

print(p1.first + " " + p1.last); // Lou-Lou Smith

// a1.last = "Cowstein"; // ERROR no last in a Cow

// p1.age = 85; // ERROR no age in a FullName

p1.first = a1.name; is one of those things that can confuse you later.
First off, it’s simple: p1.first is a string, and so is a1.name;, so it’s no different
than w1=w2;.

228

The possibly confusing part, if you start thinking about it, is how we’re
copying from the inside a Cow into the inside of a FullName. It sort of looks
like the types are different. The trick is, every step of the way doesn’t have to
match – only the end. You can copy a string field from a Cow into a string field
of a FullName.

Here’s the picture, after it runs:

a1 p1

---------------- ------------

| name: Lou-Lou | | first: Lou-Lou

| age: 7 | | last: Smith

| pounds: | ------------

The two errors at the end are showing how each struct type has it’s own
personal fields – the ones listed in its struct { }, and nothing else. Cows don’t
have last names, because we didn’t write public string last; inside Cow.

This next example is about making a semi-useful struct to improve my old
move-and-wrap code, and using some Unity-magic to see it.

To make something increase and wrap-around, I need 4 variables: the value,
the speed, the maximum and the minimum (the last two are for the wrap-around
part.) In my mind, those four variables make one variable-mover. So I’ll make
a struct for it:

struct Mover {

public float val; // the main thing

public float spd; // amount to change val, each update

public float min, max; // the limits for val

}

I want to use them in a program that changes the red and green parts of my
color. Each will use it’s own Mover variable:

Mover red, green;

That creates the 4 floats I need for red, and the 4 for green. Here’s a
picture:

red green

--------- ---------

| val | | val |

| spd | | spd |

| min | | min |

| max | | max |

--------- ---------

229

We need to add some special Unity tricks to see them in the Inspector.
Adding public in front of a global normally makes Unity show it, but structs
need two extra things. You have to also write public before the struct definition,
and [System.Serializable] on the line before. That second thing is a real
C# thing, but it’s pretty far-out and Unity is abusing it anyway, so I’ll just say
it’s magic.

The final result looks like this:

[System.Serializable]

public struct Mover {

public float val;

public float spd;

public float min, max;

}

public Mover red, green; // now they’re visible in the inspector

The really cool part is, if you put just that in a script (before Start), on
your Cube, the Inspector will show red and green. If you pop-open the little
triangles, you can see that each one has val, spd, min and max. It knows about
struct Mover and makes a picture for us!

Here’s some code using them. It’s the same color change code from way
back, except using the struct:

void Update() {

red.val += red.spd;

if(red.val > red.max) red.val=red.min;

green.val += green.spd;

if(green.val > green.max) green.val=green.min;

GetComponent<Renderer>().material.color = new Color(red.val, green.val, 0);

}

I like how a simple struct helps organize this. The program really just has
8 variables, and before we would have hand-declared all 8, like float redMax;.
Using the struct automatically makes red and green have the same 4 subparts;
and typing red-dot and using the pop-up is an easy way to write the program.

The variables start as all 0, so running this won’t do anything good. Start
could give them values, like red.spd=0.02f;. But it’s easier entering values
through the Inspector. Probably 0 and 1 for min and max. Or 0.5 to 1, and
so on. A different speed for red and green will make a longer pattern. With
a little work, they can cycle through a bunch of different shades before repeating.

230

19.2 Common errors

Seeing some common struct errors is a good excuse to talk about the rules, and
explain more about how they work:

• Cow.name = "steve"; is an error, because Cow isn’t a variable. In the
sample program, there are two cows: c1 and c2, so there are only two
names – c1.name and c2.name. Cow is a type, so Cow.name="Steve"; is
like int = 6;. The thing in front of the dot has to be an actual declared
variable.

• age=6; won’t change the age of any cows, and is probably an error. There
has to be a cow in front – c1.age or c2.age. Even if you have only one
cow variable, age=6; won’t assume you mean that cow.

• c1 = "Elly"; is an error. Struct variables always have to use a dot and
say which field you want (there are a few exceptions.) Even though name

is the only place it could go, you still have to write c1.name="Elly"; The
computer will never “guess” a field for you.
Also, as a double-check, the types don’t even match: c1 is a cow and
"Elly" is a string.

• FullName p; p="Mark"; is an error. I thought that since both parts of
a FullName are strings, maybe the computer would change them both
to “Mark”. But it still won’t guess fields for me. I have use p.first =

"Mark";. Or I could use the old same-assign shortcut: p.first=p.last="Mark";.

• print(c1); isn’t a red-dot error, but won’t work. You have to print out
each part yourself: print(c1.name+", "+c1.age+ . . .).
Most commands with structs are that way. For example, you can’t use
f1+f2 on two FullNames. You have to add f1.first+f2.first yourself.

• int age; is not an error! The field names only live inside that struct. If
you declare variable age like that, and use age=7; the computer knows
you’re talking about the regular age variable. If you use c1.age=7;, it’s
definitely the age field of c1.

Here’s a picture of cow c1, c2; float age;:

c1 c2

------------ ----------

| name: | | name:

| age: | | age:

| pounds: | | pounds:

------------ -----------

age:

The three ages are c1.age, c2.age and age. The regular age could even
be a float or a string. That age and the Cows’ age’s are totally unrelated.

231

19.3 rules

We’ve seen most of the rules in examples, but it’s still nice to have them all in
one place. For most, just skim them to be sure you’ve gotten them right. But
there should be a few new things in here:

• A new struct type is defined using struct identifier { list-of-fields }.
It goes in the global area. struct is short for structure, as in a small
building.

• The name of a struct is any legal identifier: a, d 2, bunchOfRocks
We try to use style rules so you don’t confuse struct names with vari-
able names. One rule is to capitalize the first letter. Another is to add
underscore-t (for example cow t).

• Each field looks like a variable declaration with the word public in front:
any type, a space, and an identifier. Ex: public float f;. They aren’t
really variable declarations, but it seemed right to borrow the syntax.
If you forget the word public, it isn’t a “red dot” error, but it means you
can’t use that variable (this is a somewhat silly, tricky rule. If you make
a struct, but you get errors when you try to use a part, check you put
public in front of that field).

• Can use the multi-declare shortcut for fields: struct FullName { public

string first, last;}

• Fields can be different types, the same type, or any combination. There’s
nothing special about a struct where all fields happen to be the same type,
or all different.

• It’s legal to have only one field, or even zero. That’s usually pointless, but
sometimes people have a reason to do it. Ex:
struct Number { public int val; }. If you do that, you still have to
use the fields: Number x; x.val=5;

• The order you create fields doesn’t matter. In other words, the definition
of Cow could have age first, and it would work the same. Since you look
them up using words, the computer finds the correct field no matter
where it is.

• The field names can be reused outside of that struct. Here’s a legal
example where Book uses title as a field name, and so does Song, and
we also declare it as a global:

struct Book { public string title; public int pages; }

string Song { public string artist, title; public float length; }

int title;

232

The three titles have nothing in common with each other. It’s just a
coincidence they have the same name.

• There isn’t any short-cut for using field names by themselves. Even if you
only have 1 Cow variable, age=6; won’t work on it. You always have to
have variable-dot-fieldName.

• Structs have a special = shortcut to copy one entire struct to another.
For two cows, c1=c2; means to use = on each part. It’s a shortcut for
c1.name=c2.name; c1.age=c2.age; c1.pounds=c2.pounds;.

There’s a new error here as well: every part must have been assigned.
FullName f1, f2; f1.first="A"; f2=f1; is an error. You have to at
least write f1.last=""; before you can copy it.

• Different structs always count as different, even if they have the exact same
fields. For example, if you made struct Sheep with the exact same con-
tents as struct Cow, and had Cow c1; Sheep s1;, then s1=c1; would
be an error.

This is on purpose. If you made one struct for sheep and another for
cow, it’s because you want the computer to tell you when you mix them
up.

Of course, c1.name = s1.name; is always legal – it’s just a string to a
string.

19.3.1 namespace vs. struct dots

We already know C# uses the dot for namespaces. In that chapter I warned
you we were going to double-use the dot for something else. This is the second
use. An example of both uses:

float n = Mathf.PI; // namespace

int a = c1.age; // inside struct

They both look inside the thing before the dot, but besides that, they’re
very different. Mathf isn’t a variable, and there’s one Mathf.PI. It’s really a
built-in global.

On the other hand, there’s one age for each Cow we declare; and Cow.age is
an error.

There really should have been a different symbol for each, and it is confusing
at first, but you get used to it. When you see Jark.groat you just have to check
whether Jark is a namespace, in which case groat is a global there; or whether
Jark is a declared variable, in which case groat is a field.

Examples:

233

Cow c1; c1.age=Random.Range(0,8);

field^ ^namespace

int n = Mathf.Max(c1.age, c2.age);

namespace^ ^field ^field

19.4 Builtin structs: Color, Vector3

We know Unity3D’s position and size are a combined x,y&z. Now that we’ve
seen structs, it should be obvious that’s how Unity is doing that. Vector3 is
just three floats, named x, y and z. It’s already in the computer, so you can’t
redefine it, but here’s what it looks like:

struct Vector3 {

public float x, y, z;

}

The name is from math: vector is a math term for list of numbers, and the
3 at the end is a reminder it has 3 parts.

The old position line, transform.position = new Vector3(x,0,0);, was
using a shortcut. new Vector3(x,0,0) is a way to create an instant struct.
Creating a normal Vector3 variable can be nicer. Here’s the old and the new
way:

void Start() {

transform.position = new Vector3(0,0,0); // old way

// new way:

Vector3 upperLeft;

upperLeft.x=-6.5f; // just pick some numbers for x,y,z

upperLeft.z=4.0f;

upperLeft.y=0;

transform.position = upperLeft;

}

The last line is assigning a struct to a struct – it copies the x,y,z from
upperLeft into position (the old line also did that, but I didn’t make a big deal
about it.)

We’ll see how this improves movement code, later.

For fun, write public Vector3 p; as a global variable in any script and
look in the Inspector. You should see the x, y and z fields going across. It lists
them that way instead of with the triangle-toggle, since it’s built-in – they tried
to make it look nicer.

234

Scale, a Cube’s size, is also a Vector3. That might seem odd, since Vector3 is
for position, but it makes perfect sense. After all, we use floats for anything that
wants a decimal – position, how red to be, how much a cow weighs. Anytime
we want an x,y,z together, we should use a Vector3.

This make us be wide and skinny (I’m leaving out the old way):

void Start() {

Vector3 sz;

sz.x=3; // wide

sz.y=sz.z=0.4f; // standard double-assign trick

transform.localScale = sz;

}

For extra fun, this uses the same Vector3 to set position, then size:

void Start() {

Vector3 v; v.x=6; v.y=-2; v.z=0; // just some position

transform.position = v;

v.x=0.4f; v.y=2; v.z=1; // redo v to use as scale

transform.localScale = v;

}

19.4.1 Color

We’ve been setting colors using r, g and b – another struct. It looks like this
(Unity already has it defined):

struct Color {

public float r, g, b, a;

}

The very short field names are fine, since they’re inside of a color – r clearly
stands for red. The last one, a, is “alpha” for transparency. It won’t do anything
(setting up the ability to be transparent takes a few steps).

It turns out Unity has a Vector4, which is also four floats. Vector4 and
Color are identical structs. But’s that legal, and fine, like Cow and Sheep. We
prefer using a struct named Color for colors, with floats named r, g and b.

If you declare public Color c1; as a global, the Inspector will make a
fancy color-picker. That’s just great, and why we use fancy editors. But it’s
merely a very nice way to set the 4 floats in a color stuct.

The code below will turn us orange, using a Color variable. Even though
alpha is ignored, we have to set it to something – the rule where you can’t assign
a struct unless every field is set:

235

void Start() {

Color cc;

cc.r=0.9f;

cc.g=0.6f;

cc.b=0.1f;

cc.a=1; // ignored, but must be set to something

// same old line, but assigning our Color variable:

GetComponent<Renderer>().material.color = cc;

}

19.5 Constructors, struct literals

We’ve seen how you can create an instant red using Color(1,0,0); or an instant
xyz position with Vector3(-7,0,0). The basic rule for an instant struct is to
put the name with parens around the values, for example (this is almost legal):
Cow("Amy",12,1600).

The cow in front should make sense. (0,1,1) could be a color, or a Vector3,
or a hundred other structs we wrote which happen to have three numbers. We
have to say which one it is.

The technical term for the command is Constructor – it constructs a color
from those values. Cute, right? Technically new Vector3(1,2,0) constructs a
struct literal. Remember literal is the term for a constant value of a type.

C# requires the word new in front. We’ve already seen this in
transform.position = new Vector3(x,0,0);. Eventually our Cow will be
new Cow("Amy",12,1600);

We can use constructors to assign to struct variables. Here we set up a
Vector3 and a Color using the shortcut:

Vector3 pos = new Vector3(5,0,0); // assigns all 3 at once

Color winCol = new Color(0.5f, 0.2f, 0);

winCol = new Color(0,0,0); // can change later with same shortcut

winCol.g=1; // can assign fields like normal

Another rule, and this is common in many languages: empty parens gets
you all 0’s or empty strings. For example new Vector3() is the same as new

Vector3(0,0,0), and new Cow() is a shortcut for initializing the name to ""

and age and weight to 0’s.
new Color(); gets you four 0’s, which is a useless see-through black. But

at least it follows the constructor rules.

Another rule, also common, is you have to write the useful constructors
yourself. This means none of the structs we write will have any until we learn

236

to write them. We can use Cow c = new Cow(); to blank it out, but we’ll have
to make real cows the long way until we write a Cow constructor.

But this rule also means you can write all kinds. If you type “new Vector3(”
the drop-down shows three versions. Besides all three or none, you can enter
just x and y, leaving z at 0:

transform.position = new Vector3(x,y); // sets z to 0

For color, they added a different shortcut. If you leave off the final trans-
parency, it sets it to you 1 (1 means solid, not transparent at all). I’ve been
using it the entire time:

Color c = new Color(1,0,0,1); // solid red (final 1=not see-through)

c=new Color(1,0,0); // short-cut (sets alpha to 1)

There’s no shorter shortcut, since why would anyone want to enter just red
and blue?

Then, remember, constructors are only shortcuts – we can always declare a
variable and hand-set each field.

19.6 Nested structs

The fields in a struct can be any type, even another struct. We usually call
that a nested struct, like those Russian dolls nested inside of each other. It’s a
useful thing to be able to do. There aren’t any special rules for this – structs
inside structs work the normal way – but they can look funny. This is just a lot
of examples.

I want to change the Cow struct so each Cow also has two Color’s. So that’s
a struct in a struct. To simplify, I’m getting rid of age and weight:

struct Cow {

public string name;

public Color mainCol;

public Color spotCol;

}

Here’s some code using it. I set each color a different way. For mainCol I
copy an entire Color variable into it. For spotCol I copy in r,g,b,a one at a
time:

Cow c1;

c1.name = "Bessy"; // same as before

Color blk; blk.r=0; blk.g=0; blk.b=0; blk.a=1;

c1.mainCol = blk; // copy a Color to a Color

c1.spotCol.r=0.4f;

237

c1.spotCol.g=0.3f;

c1.spotCol.b=0.1f;

c1.spotCol.a=1;

The last part with c1.spotCol.r=0.4f; is the most interesting. Using more
than one dot isn’t a new rule – it’s just the way the usual struct rule works out.
The trick is to read left-to-right. c1 is a Cow. It has mainCol or spotCol.
c1.spotCol is a Color, it has r, g, or b.

As usual, once you get to a box, it counts as a variable of that type.
c1.mainCol.g is a regular float. You can do float things with it, like c1.mainCol.g+=0.2f;.

c1.r is an error (plus it makes no sense.) We have to use c1.mainCol or
c1.spotCol, then we can add the dot-r. It’s really the old can’t-jump-over-a-
field error.

Here’s another example, putting one of my own structs inside another. A
Plumber has a FullName and an hourly rate:

struct FullName { public string first, last; } // no change

struct Plumber {

public FullName name;

public float hourlyRate;

}

FullName customer; // for comparison

Plumber p1;

The first thing is that this doesn’t hurt or change FullName. We can still
use it like normal, to declare FullName customer;. In other words, now that
FullName is a type, anyone can use it, including Plumber.

Here’s a picture of p1:

p1

| ----------

| name | first:

| | last:

| ----------

| hourlyRate:

p1 has two parts. That’s what the definition of Plumber says. The first part,
name, also has two parts: p1.name.first and p1.name.last.

Here’s some code using customer and p1:

// this is just a regular FullName, to show it works the same:

238

customer.first = "Lom";

customer.last = "Lomson";

p1.hourlyRate = 24.50f; // nothing special here

p1.name.first = "Larch";

p1.name.last = "Larchenson";

// redo the name:

p1.name = customer; // plumber’s name is now Lom Lomson

Same as before, p1.first would be an error. You can’t skip past name.

There’s no limit to putting structs in structs in structs. You just use as
many dots as you need.

19.7 Structs as function inputs

Since a struct is a type, it can be used as a parameter. Here’s an example of a
function which turns a FullName into a nice string:

string commaName(FullName f) {

string w=f.last + ", " + f.first; // last, first

return w;

}

commaName(customer); would give us "Larchenson, Larch". Since structs
can’t print themselves, functions turning them into nice-looking strings are com-
mon.

This one turns a plumber into a string. It’s interesting since a plumber
contains a FullName, so we can re-use commaName for the plumber’s name:

string PlumberDesc(Plumber p) {

string nm= commaName(p.name); // re-using. p.name is a FullName

return nm+"; Hourly rate: $" + p.hourlyRate;

// ex: Clark, Stan; Hourly rate: $37

}

If plumber names were printed in a different way we’d write it out. Say we
only wanted ”Clark, $37/hr:

string PlumberShortDesc(Plumber p) {

return p.name.last + ", $" + p.hourlyRate + "/hr";

}

Built-in structs can be inputs. This is a somewhat silly function that tells
us how bright a color is (it averages red, green and blue):

239

float getBrightness(Color c) {

float sum=c.r+c.g+c.b;

return sum/3.0f; // range is 0-1

}

Suppose we had some funny loop that cycled c1 through a lot of colors.
if(brightness(c1)<0.1f) could be used to test when it’s too dark.

Passing structs to functions is another of the main reasons we make them.
It’s a lot clearer and shorter for a function heading to say it takes a Cow than
to say it takes a string, int and float.

19.8 Structs as return values

Functions can also return structs. There’s no special rule for it – these are just
examples:

This one returns a random Color. I like it because it follows my standard
pattern: declare variable for the answer, fill it, return it:

Color randCol() {

Color ans;

ans.r = Random.Range(0.0f, 1.0f);

ans.g = Random.Range(0.0f, 1.0f);

ans.b = Random.Range(0.0f, 1.0f);

ans.a=1;

return ans;

}

We can use it with Color c1 = randCol();. Just so you know, this method
tends to get a lot of ugly browns and greys.

This one does a table look-up (pretend we have Colors 0, 1 and 2, and use
an int to say which one to use):

Color numToCol(int colNum) {

Color ans;

if(colNum==0) ans=new Color(1,0,0); // red

else if(colNum==1) ans=new Color(0,1,0); // green

else if(colNum==2) ans=new Color(0.5f, 0.5f, 1); // light blue

else ans=new Color(1, 0, 1); // error purple

return ans;

}

It’s just a standard table-making cascading if, with a none-of-the-above in
the final else (purple.) I used the constructor short-cuts to make the colors,
but didn’t have to (I could have used curly-braces and set rgb by hand.)

240

A sample use is GetComponent<Renderer>().material.color=numToCol(1);.

A lot of programs use 0-255 for color values. For example, (255,128,0) is
orange. This function makes a usable Color from 0-255 values. For example,
Color c = colFrom255(255,128,0); will give us (1,0.5,0), which is the orange
value in Unity:

// lets us make a Color using 0-255 numbers:

Color colFrom255(int r, int g, int b) {

Color ans; ans.a=1;

ans.r = r/255.0f;

ans.g = g/255.0f;

ans.b = b/255.0f;

return ans;

}

We could use GetComponent<Renderer>().material.color = colFrom255(210,0,255);

to turn ourself blueish-purple.

The next, slightly fakey, function returns a Vector3. It takes a y coordinate
and returns a point on the left edge of the screen (it just fills in -7 for x and 0
for z):

Vector3 leftPos(float y) {

Vector3 ans;

ans.z=0; ans.y=y;

ans.x = -7; // left edge

return ans;

}

We might use it like transform.position = leftPos(-3);, to put us on
the left near the bottom.

It also shows the “field names only matter in the struct” rule. Input y is a
regular float. ans.y = y; is fine. It copies the input y into the y field.

Finally, we can do both – use a struct for input and output. This one
brightens (or darkens) the input Color. It uses the “modify the input” trick, to
save declaring an extra variable:

Color brighterCol(Color c, float amt) {

c.r+=amt; if(c.r>1) c.r=1;

c.g+=amt; if(c.g>1) c.g=1;

c.b+=amt; if(c.b>1) c.b=1;

return c;

}

It’s also an example of a function that seems like it might change you, but
doesn’t:

241

brighterCol(c1, 0.1f); // does nothing

Color c2 = brighterCol(c1, 0.1f); // c1 unchanged, c2 is a brighter c1

c1=brighterCol(c1, 0.1f); // makes c1 10% brighter

19.9 Uninitialized structs

Structs don’t automatically initialize any of their fields. As usual, cow c2;

n=c2.age; is an uninitialized variable error. That seems about right.
But since they have parts, structs have an extra bonus rule: when you use

a whole struct, every part needs to have a value. In other words, c2=c1 or
doCowStuff(c1) are errors unless every part is filled in.

The idea is, what if c1 only has the name filled in? c2=c1; technically makes
c2 into an exact copy, with only its named filled in. But it seems weird that a
variable can have empty parts after an =. So they made it illegal.

For example, this function only reads the age. But you need to fill in the
whole cow to run it:

float normalCowWt(Cow c) {

return 20.0f + 40.5f*c.age;

}

Cow c1; c1.age=8;

int n = normalCowWt(c1); // error. Passing uninitialized c1

This rule is a cool example of how computer languages always have rough
spots and have to choose. C# is trying to be safer, so make some things errors
that aren’t actually a problem.

It also leads to a fun style rule. C# users are in the habit of always using
the empty constructor: Cow c = new Cow();. It’s a simple way to make sure
everything is filled in. You don’t need to. If you were going to fill every part
anyway it’s a complete waste. But it doesn’t hurt and feels like a “better safe
than sorry” thing.

242

	Structs
	Cow struct example
	More examples

	Common errors
	rules
	namespace vs. struct dots

	Builtin structs: Color, Vector3
	Color

	Constructors, struct literals
	Nested structs
	Structs as function inputs
	Structs as return values
	Uninitialized structs

