Chapter 18

Function examples

18.1 Introduction

This chapter is all function examples and tricks, plus some new Unity functions
that let us do neat things.

One style for writing short functions is to change the input into the answer.
It saves you having to make an extra variable, and often looks fine. Here’s the
clamp function written in that style (recall if forces the first input to be between
the other two.) n is the input and the output (after we fix it):

float clamp(float n, float min, float max) {
if (n>max) n=max;
else if (n<min) n=min;
return n;

}

On longer functions it can be too confusing. You can forget that n isn’t the
original input any more.

Another style is putting all the math on the return statement. This is
popular for short functions:

// recall lerp(4, 7, 0.3) is 30% of the way from 4 to 7:
float lerp(float begin, float end, float pct) {
return begin+(begin-end)*pct;

}

// using the fancy 7: value-returning if for max:
float max(int a, int b) { return a>b%a:b; }

“Front-end” functions often use that trick. This uses the real clamp to do
the work:

209

float clampltolO(float n) { return clamp(n,1,10); }

Putting it on one line like that makes it easy to see that all this function
does is run the real clamp with 1 and 10 already fllled in.

This uses the old bool closeEnough function to check for a number close
to zero:

bool almostZero(float n) { return closeEnough(n,0); }

// ex:
if (almostZero(milkLeft)) print("buy milk, ma.");

The same trick works on made-up non-mathy functions. Here’s a story-
telling function, then a shortcut with the name filled in:

// two-input story function:

string adventurel(string name, string animal) {
string ans = "One day "+name+" took the "+animal+" for a walk on the beach.";
return ans;

}
We run that a lot with the name "you", so we make a shortcut:

// short-cut using adventurel:
string youAdventurel(string ani) { return adventurel("you", ani); }

youAdventure("cow") ; is you and a cow on the beach.

We often mix the tricks. This closeEnough has the equation on one line,
and uses function abs (absolute value) to do the work:

bool closeEnough(float a, float b) {
return abs(b-a)<0.01f;
}

In the old days, I would have computed abs(b-a) into a variable, then
used an if/else it check it. return abs(b-a)<0.01f; does the same thing, but
shorter.

You're allowed to nest a function call in a function call. This uses 2-input
max to find the max of 3 numbers:

float max3(float a, float b, float c) {
return max(max(a,b), c);

}

It runs “inside out.” The inside max finds the largest out of a or b, then the
outside max compares that to c.

210

18.2 Change me type functions

A lot of value returning functions look like they change you, but, of course, they
can’t. For example:

int cows=14;
clamp(cows,0,10);
print(cows); // 14 7?7 why wasn’t this clamped to 107

The confusion is, in our minds, clamp(cows,0,10) forces cows between 0
and 10. But what it really does is compute that number and return it. Like
every other function, we have to “catch” the result:

int cows=14;
int c2=clamp(cows,0,10);
print(cows + " " + c2); // 14 10
To force cows between 1 and 10, use cows=clamp(cows,0,10);. Likewise,
to make n positive, use n=abs(n) ;.

18.3 Dice functions

Functions using random feel different, so I'm putting them in their own sec-
tion. None of these are all that special. Just examples of how, if you use
Random.Range a lot in a certain way, you can write a function for it.

Rolling a 50% chance isn’t that long, but if we use it a lot, we could turn it
into a function. A funny thing is it takes no inputs. heads () is true half of the
time:

bool heads() { return Random.Range(0.0f, 1.0£)>0.5f; }

Now we can say if (heads()).

Rolling a percent, like a 20% chance, is also short but awkward. Here’s
a common function to make that easier. It uses 1 to 100, so you can write
chance (20) for a 20% chance:

bool chance(float pct100) { return Random.Range(0.0f, 100.0)<=pct100; }

if (chance(20)) is true 1 time in 5. If we have a game with lots of percent-
based odds, this will be useful.

Sometimes we want get a random plus/minus value, for example -0.1 to 0.1,
or -2 to 2. We can make a shortcut function for that:

211

float randPM(float plusMinus) {
return Random.Range(-plusMinus, plusMinus);

}
If we want about 50, we can use 50+randPM(2); to get 48 to 52. To have
red to be about 0.4 use 0.4f+randPM(0.1f) ;.

If we have a board game, we might roll two 6-sided dice a lot. The integer
version of 1-6 is Random.Range (1,7) (it won’t roll the highest, just because.)
We can write a function to roll that twice and add:

float roll2d6() {
return Random.Range(1,7) + Random.Range(1,7);
}

Now we can use int move = roll2d6(Q) ;. If you need an 8 or more to beat
the orc, use if (ro112d6()>=8).

18.4 More style; types of functions

We often break up a main program into slop-tastic chunks like this:

void Update() {

doAl1lMoves();
updateColorChange () ;
if (difficulty>1) updateMoveMonsters();
updateCheckWinLose () ;
}
void doAllMoves() { ... }

It’s pretty much understood that doAllMoves will be a sad excuse for a
function. It reads and sets a bunch of globals. The others will be the same
way. All they do is move code from out of Update. But that’s helpful. It makes
things easier to find. We can use the editor collapse-code-block feature to hide
or show only the functions we need to see now.

We love functions that only read from their inputs. We can see everything
they use right there on the line calling them. But sometimes, rarely, we make
a function that has a setting. Here’s a standard set color with a special option
to not be too dark:

void setColor(float r, float g, float b, bool notTooDark=false) {
if (notTooDark) { // none can be less than 0.3:
if(r<0.3f) r=0.3f; if(g<0.3f) g=0.3f; if(b<0.3f) b=0.3f;
}
GetComponent<Renderer>() .material.color=new Color(r,g,b);

3

212

setColor(rl,gl,bl); runs it normally (since the 4th uses a Default set-
ting). Otherwise run it with setColor(rl,gl,bl,true);.

Another way to do that is using a global for the setting:

// change this to change how setColor works
bool colorCantGetDark=false;

void setColor(float r, float g, float b) {
if (colorCantGetDark) {
if(r<0.3f) r=0.3f; if(g<0.3f) g=0.3f; if(b<0.3f) b=0.3f;
}
GetComponent<Renderer>() .material.color=new Color(r,g,b);

}

This can be nice. Suppose we can’t be too dark for the next 10 seconds.
Set colorCantGetDark=true;, then false after 10 seconds. That’s way easier
than needing it as a 4th input.

We rarely do things this way. It’s easy to forget about the setting — it’s more
hidden than if it was an input. And if we need this function in a new program
we also have to copy the global variable. But Unity has at least one thing that
works like this (there’s a global setting for raycasts).

Some functions mostly do something, but return a minor value, usually
saying if it worked. For example, this function’s job is to move and wrap-
around. It returns true when it wraps:

bool moveAndWrap(float xMove) {
// true means we had to wrap-around
x+=xMove;
if (x>7) { x=-7; return true;}
if (x<-7) { x=7; return true; }
return false; // didn’t wrap around

We can use it by itself: moveAndWrap(0.1£f) ;. We ignore the return value.
Or we can catch the answer and act on it:

bool didALap = moveAndWrap(0.1f);
if (didALap) {

lapCounter++;

// do more lap stuff

3

The first line is as if we're calling moveAndWrap(0.1f) to do things for us.
But then we're asking it “so, how did it go? Was there a lap?”
We often us it directly inside the if:

213

if (moveAndWrap(0.1f)) { // do lap stuff

Inside of the if, the program actually moves us. Functions inside of if’s
really, really shouldn’t also change things. But in this case it’s fine. We under-
stand it’s a “do some stuff then tell me how it went” situation.

When we have a function that mostly computes, but also does something,
we call those side effects. For example, this checks whether we're off the edge,
but also adjusts us:

bool is0ffEdge() {
// assume x is a global for our position
if (x>7) { x=7; return true;}
if (x<-7) { x=-7; return true; }
return false;

This is confusing, since it feels like an answer-only function:

if (is0ffEdge()) { // arrg. This also may have moved us
// check how far off we are:
// opps! We’re in-bounds now, since isOffEdge fixed us

But if we renamed it bool forceIntoBounds it would feel like a do-something
function that happened to have a minor return value.

18.5 More Unity Movement examples

We know enough now to use some new Unity built-ins and make some more
complex, fun movement. I'm going to barely skim some of the set-up — I'm
assuming at this point you either played with Unity enough to figure it out, or
you're happy just reading these examples.

We need 3 new things. The Rotate function spins us. This spins us 2 degrees
each frame, like a top:

void Update() {
transform.Rotate(0,2,0);
}

Rotate has 3 inputs. The other 2 rotate us like a summersault, or rolling
sideways. We won’t use them.

The Translate function moves us on our personal forward. Running this
with a tilted Cube will go whichever way it’s facing. The speed of 0.1 is about

214

the same speed we were using before — takes 140 updates to cross from -7 to 7
at that speed:

void Update() {
transform.Translate(0,0,0.1f);
}

We won’t use the other 2 input slots. They move us sideways and up.

Combined, the two new functions can move us in a circle, spinning and
moving forward:

void Update() {
transform.Rotate(0,2,0);
transform.Translate(0,0,0.1f);
}

The last new rule is asking the cube where it is. transform.position.x.
gives us our current x position, which is probably -7 to 7. As a test, this snaps
us to the center whenever x goes past 3:

void Update() {
transform.Rotate(0,1,0); // slow spin for bigger circles
transform.Translate(0,0,0.2f); // faster movement

// checking our position:
if (transform.position.x>4)
transform.position = new Vector3(0,0,0); // snap to center

To see this we’ll need to be in top view. We can put the camera 10 units
over the center, at (0,10,0), Then tilted looking down with rotation (90,0,0). I
put a little ball as a child, just in front of it, so I could see which way it was
aimed.

Now we're ready to write some code. Whatever we do, we want to stay in
bounds. We’ll write a function to check for it:

bool outOfBounds() {
float x=transform.position.x;
float z=transform.position.z;
if(x<-7 || x>7 || z<-5 || z>5) return true;
return false;

If we slow down our spinning, we can rotate in circle big enough that we’ll
go out of bounds. The code below will spin us 180 degrees when that happens:

215

void Start() {
// We start with a random spin:
float ySpinAny=Random.Range (0,360);
transform.Rotate(0, ySpinAny, 0);
X

void Update() {
// spin slowly and move forward (same code as before):
transform.Rotate(0,1,0);
transform.Translate(0,0,0.1f);

if (outOfBounds()) // turn around when out-of-bounds:
transform.Rotate(0,180,0);

This is nice, but gives us boring, predictable curves after watching it for a
while.

We can change it up with the usual tricks. Our turn speed can be a variable
and we can add a little randomness to the 180 degree flip:

float spin=1; // our turn speed

void Start() {
transform.Rotate(0, Random.Range(0,360), 0); // random facing

}

void Update() {
transform.Rotate(0,spin,0);
transform.Translate(0,0,0.1f);

// 4%, chance to change the spin:
if (Random.Range (0.0f, 1.0£f)<0.04f)
spin=Random.Range(-1.0f, 1.0f);

if (out0fBounds()) {
// spin about 180 degrees, 150 to 210 degrees:
float turnAround = Random.Range(180-30, 180+30);
transform.Rotate (0, turnAround,0) ;

}

This moves in semi-interesting curves, with fun bounces.

This has the same rare stuck-out-of-bounds bug as the old back-and-forth
code. If it somehow gets too far out it will just spin in place. We can make
an improved outOfBounds function to force it in. The name is changed so we
remember it also can move us:

216

bool keepInBounds() {

float x=transform.position.x;
float y=transform.position.y;
float z=transform.position.z;
bool wasOut=false;

if (x<-7) { x=-7; wasOut=true; }
if (x>7) { x=7; wasOut=true; }
if (z<-5) { z=-5; wasOut=true; }
if (z>5) { z=5; wasOut=true; }

// if it was out of bounds, move us to the fixed position:
if (wasOut) transform.position=new Vector3(x,y,z);

return wasQOut;

I think that’s a neat use of a bool variable.

We can try other things. If we move sideways and forward, we're going
diagonally. If we use a counter we can move left 10 times, right 10 times, left
10 times in a zig-zag:

float zigSpd=+0.05f; // sideways movement. Will flips +/-
public int ziglen=14; // how long each zig lasts
int zigTimer; // counts up to ziglen as we move

void Start() {
transform.Rotate(0, Random.Range(0,360), 0); // random facing

zigTimer=ziglen/2; // start with 1/2 a zig
}

void Update() {
// forward and left or right:
transform.Translate(zigSpd,0,0.1f); // forward and L or R

zigTimer--;

if (zigTimer<0) {
zigSpd*=-1; // flip left/right
zigTimer=ziglen; // restart the count

}

if (keepInBounds()) {
float turnAround = Random.Range(180-30, 180+30+1);
transform.Rotate (0, turnAround,0) ;
zigTimer=ziglen/2; // another 1/2-zig
}
}

217

This works — it moves in short, straight lines making a zig-zag — but I just
don’t like the way it looks. My second try at zig-zagging is to always move
forward, and change our facing. We’ll snap 30 degrees left and right as we
move:

public int ziglen=35; // how long each zig lasts
public float zigDegs=30.0f; // degrees of each zig
int zigTimer; // counts up to ziglLen

void Start() {
transform.Rotate(0, Random.Range(0,360), 0); // random facing
zigTimer=ziglen/2; // start with 1/2 a zig

}

void Update() {
transform.Translate(0,0,0.1f); // only move forward

zigTimer--;

if (zigTimer<0) {
zigTimer=ziglen; // reset the count
transform.Rotate(0,zigDegs,0); // do a zig
zigDegs*=-1; // zig the other way, next time.

}

if (keepInBounds()) {
float turnAround = Random.Range(180-30, 180+30+1);
transform.Rotate (0, turnAround,0) ;
zigTimer=ziglen/2; // another 1/2-zig
}
}

18.6 Reading keys

We finally know enough rules to decipher a built-in keyboard reading function.
This uses the A and D keys to move back-and-forth:

float x=0;

void Update() {
if (Input.GetKey(KeyCode.A)){

x-=0.2f;
if (x<-7) x=-7; // stay in bounds
}
if (Input.GetKey(KeyCode.D)){
x+=0.2f;

218

if (x>7) x=7; // stay in bounds
}

transform.position = new Vector3(x,0,0);

}

You can probably figure out that Input.GetKey(KeyCode.A) is true when
A is pressed. Here are some notes, mostly obvious, about it:

e The name of the function is GetKey. It’s in the namespace Input. So,
altogether: Input.GetKey.

e It returns a bool — true means that key is down. Like any bool function,
you can use it inside of an if.

e The input is which key you’re checking for. KeyCode is just an enumer-
ated type, specially made to give names to all the keys. For example,
KeyCode .DownArrow.

e There’s also an overload which takes a string as input. For example,
Input.GetKey("a").

e In general there are three ways to check keys: just pressed, currently
being held, or just let go. In Unity, these are GetKeyDown, GetKey and
GetKeyUp. Most sorts of keys or virtual buttons have those three things.

Here’s a different version, which also moves back&forth, but using GetKeyDown.
Tapping A or D starts you moving left or right. Tapping S stops you. I don’t
like this as much, but it’s fun to program:

float x=0;
float spd=0;
// set to 0, +0.2 or -0.2 by keypresses, stays the way it was set

void Update() {
if (Input.GetKeyDown(KeyCode.A)) spd=-0.2f;
if (Input.GetKeyDown(KeyCode.D)) spd=0.2f;
if (Input.GetKeyDown(KeyCode.S)) spd=0;

x+=spd;
if(x>7) { x=7; spd=0; }
if (x<-7) { x=-7; spd=0; }

transform.position = new Vector3(x,0,0);

}

We can tweak that so holding a key gradually speeds you up:

219

float x=0;
float spd=0; // changed by holding down a key
public float accel=0.005; // how much speed changes in one tick

void Update() {
if (Input.GetKey(KeyCode.A)) spd -= accel;
else if (Input.GetKey(KeyCode.D)) spd += accel;
else {
// if not holding a key, slow down, then stop:
spd *= 0.98f; // slow down (0.98 is trial and error)
if (spd<0.02f &% spd>-0.02f) spd=0; // near O should stop now
}

x+=spd;
if (x>7) { x=7; spd=0; } // kill our speed when we hit an edge
if (x<-7) { x=-7; spd=0; }

transform.position = new Vector3(x,0,0);

3

The first two ifs don’t limit the speed, but we’ll hit an edge before we get
too fast. The part where it slows down is an old movement trick. We want to
make the speed go towards zero, whether it’s positive or negative. Multiplying
by 0.98 makes 1 and -1 both go towards zero. It’s only 2% smaller, but it adds
up fast. The last slowdown line says “when speed gets really small, just be 0.”

For something completely different, we can have A and D rotate, while W
moves forward:

void Update() {
if (Input.GetKey(KeyCode.A)) transform.Rotate(0,-2,0);
else if (Input.GetKey(KeyCode.D)) transform.Rotate(0,2,0);

if (Input.GetKey(KeyCode.W)) transform.Translate(0,0,0.1f);
}

We could change this version so the W key is acceleration instead of move-
ment:

float spd=0; // forwards speed. always positive

void Update() {
if (Input.GetKey(KeyCode.A)) transform.Rotate(0,-2,0);
else if (Input.GetKey(KeyCode.D)) transform.Rotate(0,2,0);

// speed up if W held, slow down if not:
if (Input.GetKey(KeyCode.W)) {

220

spd+=0.01f;
if (spd>0.14f) spd=0.14f; // maximum speed of 0.14
}
else { // slow down if W not held:
spd-=0.005% ;
if (spd<0) spd=0;
}
transform.Translate(0,0,spd);

3

Moving onto another completely different movement, we want the Cube to
crawls around the sides of the screen. A moves clockwise and D moves counter
clockwise.

The basic plan is using a 0-3 int to remember which side we’re on. I'll use
an enumerated type, written specially for this:

enum Wall {top, right, bottom, left}; // Wall vars can be 0,1,2,3
Wall wall = Wall.bottom; // sample use

Wall wall; looks funny but it’s common. The type is Wall and the variable
is lower-case wall since I couldn’t think of a better name.

wall will act as a state-variable. Each wall handles movement on itself,
passing you to the next wall when you hit an edge:

float x=0, z=-5; // middle of bottom wall

void Update() {
// get direction of move:
int mv=0; // -1 0 or 1. Direction based on bottom wall
if (Input.GetKey (KeyCode.A)) mv=-1; // A=clockwise
else if (Input.GetKey(KeyCode.D)) mv=1; // D=counter-clockwise

// handle move for each wall:
if (mv!=0) {
float mvAmt=0.1f*mv;

if (wall==Wall.bottom) {
x+=mvAmt; // note: + for D, - for A
if (x>7) { x=7; wall=Wall.right; }
else if (x<-7) { x=-7; wall=Wall.left; }
}
else if (wall==Wall.top) {
x-=mvAmt; // top moves moves backwards from bottom
if (x>7) { x=7; wall=Wall.right; }
else if (x<-7) { x=-7; wall=Wall.left; }
}
else if (wall==Wall.right) {

221

}

z+=mvAmt;

if (z>5) { z=5; wall=Wall.top; }

else if(z<-5) { z=-5; wall=Wall.bottom; }
}
else if(wall==Wall.left) {

z-=mvAmt; // left wall: forwards=down

if(z>6) { z=5; wall=Wall.top; }

else if(z<-5) { z=-5; wall=Wall.bottom; }
}

transform.position = new Vector3(x,0,z);

}

The enumerated type really was helpful here. While writing this, I messed up
some of the numbers and directions. Seeing lines like if (wall==Wall.right)
made it easy to see I was in the correct section.

18.

7 Making a real function library

So far, I've been suggesting that all of your useful functions should be pasted
into each new script. That will work, and we did it in the old days, but there’s a
nicer way. Almost all languages and environments let you spread your program

over

several files. Common, similar functions are usually placed in a file by

themselves.
The steps to putting functions by themselves are:

Make a new C# script the usual way (Project -> CreateC#script;
double-click to open in the editor.) The name doesn’t matter.

Delete everything past the first two using lines.
All that stuff is Unity set-up for things that go on a gameObject. we're
making something different.

Pick what you want to call the namespace. I'm calling mine rand. This
does not have to match the file name.

Set up the namespace like below. You might notice it’s a simplified version
of what we had before:

public class rand {

3

Write your pure functions inside of it, with public static in front of
each one (ex below).

By pure, I mean they take inputs, and return values. They can’t use any
globals (which should be obvious, since how would they know what globals
your other scripts have) and they also can’t change position, color or size.

222

e Don’t put it onto a gameObject (the system won’t even let you.) Just
having it be created is enough. The system will find it.

e Now any other script can run them by putting rand-dot in front.
A sample file with some random functions:

using UnityEngine;
using System.Collections;

class rand {
public static int twoD6() { return Random.Range(1l,7)+Random.Range(1,7); }

public static bool heads() { return Random.Range(0.0f, 0.1£)>0.5f; }

public static bool chance(int pct100) {
return Random.Range(0.0f,100.0f)<pct100;
}
}

Anyone can run if (rand.head() for a coin flip.
Unity uses this trick in a few places. Random holds several randomizing

functions. Mathf has lots: Mathf.Approximately(a,b) is the close-enough
function. Mathf .Abs, Mathf.Clamp and Mathf .Max are also there.

223

	Function examples
	Introduction
	Change me type functions
	Dice functions
	More style; types of functions
	More Unity Movement examples
	Reading keys
	Making a real function library

